
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

May 2018

Elliptic Cryptosystem Elliptic Cryptosystem

Elizabeth Dettrey
elizabeth.dettrey@gmail.com

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Dettrey, Elizabeth, "Elliptic Cryptosystem" (2018). UNLV Theses, Dissertations, Professional Papers, and
Capstones. 3242.
https://digitalscholarship.unlv.edu/thesesdissertations/3242

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/3242?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F3242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

ELLIPTIC CRYPTOSYSTEM

by

Elizabeth Dettrey

Bachelor of Science (B.Sc.)

University of Nevada, Las Vegas

2016

A thesis submitted in partial fulfillment of

the requirements for the

Master of Science in Computer Science

Department of Computer Science

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

May 2018

www.manaraa.com

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

April 10, 2018

This thesis prepared by

Elizabeth Dettrey

entitled

Elliptic Cryptosystem

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Department of Computer Science

Evangelos Yfantis, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Interim Dean

Hal Berghel, Ph.D.
Examination Committee Member

Andreas Stefik, Ph.D.
Examination Committee Member

Sarah Harris, Ph.D.
Graduate College Faculty Representative

www.manaraa.com

Abstract

The elliptic cryptographic algorithm first presented in a paper by E. F. Dettrey and E. A. Yfantis

is examined and explained in this thesis. The algorithm is based on the group operations of a set of

points generated from an ellipse of arbitrary radii, and arbitrary center in the case of the generalized

version, modulo a large prime. The security of the algorithm depends on the difficulty of solving a

discrete logarithm in the groups used by this algorithm. While the elliptic cryptographic algorithm

is not the most secure among the discrete logarithm based paradigm of cryptosystems for a given

prime, the algorithm can reach relatively high levels of security using a very large prime. It has

similar security to RSA, which is still widely used, when the prime in elliptic cryptography is of a

similar size to the modulus in RSA. It should be noted that the elliptic cryptographic algorithm is

not quantum safe.

iii

www.manaraa.com

Table of Contents

Abstract iii

Table of Contents iv

List of Tables vi

List of Figures vii

List of Equations viii

Chapter 1 Introduction 1

Chapter 2 Background 2

Chapter 3 A New Elliptic Cryptographic Algorithm 4

3.1 Preface . 4

3.2 Abstract . 4

3.3 Introduction . 5

3.4 The Elliptic Cryptographic Algorithm . 6

3.4.1 Ability of the Algorithm to Encrypt-Decrypt Data 8

3.4.2 The Discrete Logarithm Problem in Elliptic Cryptography 10

3.4.3 Key Exchange Analogous to Diffie-Hellman 12

3.4.4 Encryption-Decryption using Elliptic Cryptography 12

3.4.5 Digital Signing . 12

3.5 Generalization of the Algorithm to an Ellipse of Arbitrary Center 13

3.6 Conclusion . 15

Chapter 4 Examples 16

4.1 Example Using Ep(a, b) . 16

iv

www.manaraa.com

4.2 Example Using Ep(a, b, c, d) . 19

Chapter 5 Code Demonstration 22

Chapter 6 Conclusion 28

Appendix A IEEE Permission 29

Appendix B Second Author Permission 31

Appendix C Full Code for the Demonstration in Chapter 5 32

Curriculum Vitae 43

v

www.manaraa.com

List of Tables

4.1 Points in the E11(5, 6) Group . 17

4.2 Order of the Points in the E11(5, 6) Group . 17

4.3 Cayley Table for the E11(5, 6) Group . 18

4.4 Points in the E11(7, 5, 7, 9) Group . 19

4.5 Order of the Points in the E11(7, 5, 7, 9) Group . 20

4.6 Cayley Table for the E11(7, 5, 7, 9) Group . 20

vi

www.manaraa.com

List of Figures

5.1 This is C++ code for finding the inverses of the radii. 23

5.2 This is C++ code for finding the quadratic residues in Fp. 24

5.3 This is C++ code for adding two points in E127(50, 103). 24

5.4 This is C++ code for finding a base point using E127(50, 103). 25

5.5 This is C++ code for calculating A’s public key and the shared key using E127(50, 103). 26

5.6 This is C++ code for encryption using E127(50, 103). 26

5.7 This is C++ code for decryption using E127(50, 103). 27

vii

www.manaraa.com

List of Equations and Proofs

3.1 Defining Equation for the Points in E(a, b) . 6

3.2 Definition of θ1 and θ2 in E(a, b) . 6

3.3 Definition of Addition for θ in E(a, b) . 6

3.4 Definition of Addition for x in E(a, b) . 6

3.5 Definition of Addition for y in E(a, b) . 6

3.6 Proof of Closure for E(a, b) . 7

3.7 Proof of Associativity for E(a,b) . 7

3.8 Proof of the Existence of an Identity in E(a, b) . 7

3.9 Proof of the Existence of Inverses in E(a, b) . 7

3.10 Proof of Commutativity in E(a, b) . 7

3.11 Defining Equation for the Set Ep(a, b) . 7

3.12 Defining Equation for Ep(a, b) . 7

3.13 Definition of Addition Extended to R2 . 8

3.14 Inverses in Ep(a, b) . 8

3.15 Special Addition for (c, 0) in R2 . 8

3.16 Special Addition for (c, 0) in Ep(a, b) . 8

3.17 Proof (a, 0) is an Identity in R2 . 8

3.18 Proof of Closure of Inverses in Ep(a, b) . 9

3.19 Proof of the Special Addition of (c, 0) in R2 . 9

3.20 Proof of the Special Addition of (c, 0) in Ep(a, b) . 9

3.21 Proof of the Ability to Encrypt in Ep(a, b) . 9

3.22 Proof of the Ability to Decrypt in Ep(a, b) . 9

3.23 Definition of the Order of an Element of in Ep(a, b) 10

3.24 General Equation of Exponentiation in Ep(a, b) . 10

3.25 Equation for Genus 0 Curves Used by Menezes and Vanstone 10

viii

www.manaraa.com

3.26 Proof That Ellipses Are Genus 0 Curves of the Form of Equation 3.25 10

3.27 Definition of Subexponential Time . 10

3.28 Definition of Addition in Ep(a, b, c, d) . 13

3.29 Proof of Closure in Ep(a, b, c, d) . 13

3.30 Proof of the Existence of an Identity in Ep(a, b, c, d) 13

3.31 Proof of the Uniqueness of the Identity in Ep(a, b, c, d) 13

3.32 Proof of the Existence of Inverses in Ep(a, b, c, d) . 14

3.33 Proof of the Uniqueness of Inverses in Ep(a, b, c, d) 14

3.34 Proof of Associativity in Ep(a, b, c, d) . 14

3.35 Proof of Commutativity in Ep(a, b, c, d) . 14

3.36 Defining Equation for Ep(a, b, c, d) . 14

4.1 Defining Equation for E11(5, 6) . 16

4.2 Example of Calculating A’s Public Key in E11(5, 6) 18

4.3 Example of Calculating a Shared Key in E11(5, 6) . 18

4.4 Example of Encryption Using E11(5, 6) . 18

4.5 Example of Decryption Using E11(5, 6) . 19

4.6 Defining Equation for E11(7, 5, 7, 9) . 19

4.7 Example of Calculating B’s Public Key in E11(7, 5, 7, 9) 20

4.8 Example of Calculating a Shared Key in E11(7, 5, 7, 9) 20

4.9 Example of Encryption Using E11(7, 5, 7, 9) . 21

4.10 Example of Decryption Using E11(7, 5, 7, 9) . 21

5.1 Definition of an Inverse Modulo P . 22

ix

www.manaraa.com

Chapter 1

Introduction

The mathematical difficulty of calculating discrete logarithms has long made them an easy choice

for providing security in cryptographic algorithms. This thesis will present a new cryptographic

algorithm using discrete logarithms for security. The elliptic cryptographic algorithm uses groups

created using the points on ellipses of varying radii and center, modulo a prime. While elliptic

cryptography shares some similarities with elliptic curve cryptography in the flow of the algorithms

and the general premise, the use of ellipses rather than elliptic curves yields different groups. It

will be shown that elliptic curve cryptography can produce significantly safer groups than this

new alternative, though elliptic cryptography is arguably less complicated. The security of the

proposed algorithm will be investigated in the following chapters. The proposed algorithm will

be fully defined and proved to work for cryptography. The aim is to present a new cryptographic

algorithm, examine its security, and thoroughly explain how it works and how to use it.

1

www.manaraa.com

Chapter 2

Background

Some of the most familiar cryptosystems today rely on the same mathematical problem to provide

security. It is the discrete logarithm problem in finite groups. RSA, elliptic curve cryptography,

El Gamal, and even the algorithm to be presented in this paper are based on different groups and

discrete logarithms. RSA is based on the residues modulo the product of two large primes [1].

El Gamal uses a cyclic group and a Diffie-Hellman key exchange [2]. Encryption and decryption

are as simple as combining a piece of the message with the key, or the inverse key for decryption,

using the group operation [2]. Elliptic curve cryptography uses a group containing the set of

points on an elliptic curve where the possible point values are usually modulo a prime with many

points deemed to all equivalently be identities [3]. The elliptic cryptosystem to be presented in

the following chapters uses a group based on points on an ellipse modulo a prime. The recent

cyclic cryptographic algorithm uses groups based on the points on a circle modulo a prime [4]. The

security of each of these systems is based on discrete logarithms in the groups they are based in.

Other paradigms have been investigated. DNA based cryptography works with the idea of using

the sequence of a DNA strand as a one-time pad [5]. As is often the case with one-time pads, there

might be difficulty getting the pad to be secretly shared in the first place, but DNA has a random

element to it that is necessary for one-time pads [5]. Other work in this area includes stenography

and cryptanalysis. Using molecular computing to calculate a discrete logarithm, specifically aiming

to attack Diffie-Hellman, was investigated as well [6]. DNA-based cryptography and molecular

computing is perhaps an area to watch for cryptographic advancements in the future.

The field of cryptography will need to change radically with the dawn of large scale quantum

computers. Shor’s algorithm can factor in polynomial time, which will allow RSA systems to be

broken in reasonable time [7]. Surprisingly, elliptic curve cryptography is even less safe than RSA

2

www.manaraa.com

under the threat of Shor’s algorithm, because the main limiting factor for quantum computers in

this case is size [8]. Elliptic curve cryptography uses significantly smaller primes, therefore smaller

quantum computers than would be necessary for algorithms using larger primes could defeat it [8].

The algorithm presented in this paper is homomorphic to either F ∗p or the p + 1 subgroup of Fp2 ,

as will be explained in section 3.4.2. This puts it equal to RSA against Shor’s algorithm, therefore

it is not quantum safe [7]. Current work on the problem of quantum safe cryptography has yielded

a few approaches with lattice based algorithms as the most prominent. A recent work by Oded

Regev introduced a new cryptographic algorithm which was proved to be as secure as worst case

lattice problems by reducing those problems to the learning with errors problem and basing the

algorithm on that problem [9].

For now, there is a wide range of viable cryptographic algorithms available. The field of cryp-

tography can change drastically with new hardware, cryptographic paradigms, and cryptanalytic

methods. New developments are continually necessary.

3

www.manaraa.com

Chapter 3

A New Elliptic Cryptographic

Algorithm

3.1 Preface

This chapter contains ”A New Elliptic Cryptographic Algorithm”, a conference paper by E. F.

Dettrey and E. A. Yfantis which was presented at IEEE CCWC 2018 on January 10th at the

University of Nevada Las Vegas. The paper has been formatted to fit the style of this thesis. The

contents of this paper are reprinted here with permission from IEEE (see appendix A) and the

second author (see appendix B).

3.2 Abstract

A new cryptographic algorithm is presented in this research paper. This algorithm is based on

operations defined on the circumference of an ellipse of arbitrary radii a, b and arbitrary center,

modulo an arbitrary prime number large enough that the code cannot be broken within a reasonable

amount of time. The operations around the ellipse provide phase angle modulation while modulo

arithmetic with respect to the chosen prime number provides integer modulation. The phase

modulation used in this algorithm is not the same as the phase modulation transmission system for

quantum cryptography which was published in Physics journals. The algorithm has only one zero

point where the elliptic curve algorithm has many. Encryption-decryption using this algorithm is

straight forward, because integer points not in the group can be used. The algorithm has similar

security to RSA.

4

www.manaraa.com

3.3 Introduction

In this research paper we introduce a new cryptographic algorithm based on operations of points

on the circumference of an ellipse of arbitrary radii and on modulo arithmetic over prime numbers.

Elliptic curve cryptography invites comparison, as the setup and operations of it and the new

algorithm presented here are similar [3, 10]. The algorithm presented in this paper has more

straight forward encoding than elliptic curve cryptography, because integer points not in the group

can be used. Also, it has only one zero point. The algorithm has a major disadvantage compared to

elliptic curve cryptography in that it is less secure for equivalent primes. It has similar security as

RSA [1]. The algorithm performs phase modulation with operations around the ellipse, not to be

confused with the phase modulation algorithms published in physics literature [11]. Key exchange

is possible with the algorithm presented here using a method analogous to Diffie-Hellman [12]. The

algorithm introduced in this paper can be used for key management and distribution, cryptography,

authentication, and digital signatures.

It’s an interconnected world that becomes more connected by the minute, making it easy for

information to flow and difficult to keep it private. The internet of things (IoT) has created

new applications and new opportunities. At the same time, the security challenges related to

IoT are enormous. Some examples include: telemedicine, medical doctors of various specialties

providing advice to patients over the internet, and teleradiology, teams of radiologists at various

locations reading digital images and videos of patients to provide their professional opinions. Some

pacemakers are accessible by the patient’s physician over the internet. In cases where the lives

of people are in the balance, security is paramount. In addition, HIPAA requirements related to

patient privacy are very strict. Satellite navigation and guidance, specifically the global positioning

system (GPS) and its orbiting satellites, are used on a daily basis by many commercial users

and private citizens. These critical navigation systems are subject to intrusion and jamming, so

it’s imperative to provide proper security for them. As unmanned aerial vehicles (UAVs) become

more established tools in warfare and as major defense contractors focus on designing UAVs with

enhanced capabilities, they become increasingly necessary for surveillance, carrying passengers,

performing explorations, and carrying weapons. Secure transmission of video from UAVs and

secure transmission of instructions to UAVs are a must. In addition, preventing unauthorized

people from accessing a UAV is extremely important. Supervisory control and data acquisition

(SCADA) is a computer system that is commonly used to monitor and control utility plants such

5

www.manaraa.com

as water utilities, power plants and power distribution. The adversary could shut down utilities, or

even cause destruction. The list of examples of the need for private information to remain private

goes on. Cryptography is the key to privacy, authentication, digital signing and signatures, secure

and private communication, secure channel transmission, and server-host security.

3.4 The Elliptic Cryptographic Algorithm

We start by defining a new set of points on an arbitrary ellipse of radii a, b ∈ R, where R denotes

the set of real numbers.

Definition 1. Consider the points on an ellipse of radii a, b ∈ R, a, b > 0, in the x and y axis

respectively. We define the set E(a, b), as the set of points

(x, y) ∈ R2 3 x
2

a2
+
y2

b2
= 1. (3.1)

Now we define the addition on the set of points, of E(a, b), as follows:

Definition 2. Let X1 = (x1, y2) ∈ E(a, b), X2 = (x2, y2) ∈ E(a, b), with

θ1 = arctan(
y1
x1

), θ2 = arctan(
y2
x2

), (3.2)

then we define the addition X3 = X1 +X2 as a point X3 = (x3, y3) ∈ E(a, b), such that

θ3 = arctan(
y3
x3

) = θ1 + θ2. (3.3)

Theorem 1. Let E(a, b) be the set given by Definition 1, with the addition operation given by

Definition 2, then E(a, b), is an Abelian group.

Proof Let X1, X2 ∈ E(a, b) then X3 = X1 +X2 or X3 = (x3, y3) with:

x3 = acos(θ3) = acos(θ1 + θ2)= acosθ1cosθ2 - asinθ1sinθ2

=
1

a
(x1x2)−

a

b2
(y1y2) (3.4)

and

y3 = bsin(θ3) = bsin(θ1 + θ2) = bsinθ1cosθ2 + bcosθ1sinθ2

=
1

a
(y1x2 + x1y2) (3.5)

Notice that

x23
a2

+
y23
b2

=
1

a2

[(x21x22
a2

+
a2y21y

2
2

b4
− 2

1

b2
x1x2y1y2

)
+
(x22y21 + x21y

2
2 + 2x1x2y1y2
b2

)]
6

www.manaraa.com

=
x21x

2
2

a4
+
y21y

2
2

b4
+
x22y

2
1

a2b2
+
x21y

2
2

a2b2

=
(x21
a2

+
y21
b2

)(x22
a2

+
y22
b2

)
= 1 (3.6)

Therefore the point, (x3, y3) ∈ E(a, b), which is closure under addition. Now consider X1, X2, X3 ∈

E(a, b) then from 3.4 and 3.5:

X1 + (X2 +X3) = X1 +
1

a

(
x2x3 −

a2

b2
y2y3, x2y3 + x3y2

)
=

1

a

[
1

a

((
x1x2 −

a2

b2
y1y2

)
x3 −

a2

b2

(
x1y2 + x2y1

)
y3,
(
x1y2 + x2y1

)
x3 +

(
x1x2 −

a2

b2
y1y2

)
y3

)]

=
1

a

(
x1x2 −

a2

b2
y1y2, x1y2 + x2y1

)
+X3

= (X1 +X2) +X3 (3.7)

Hence the associative law holds.

Next consider the element e = (a, 0) then e ∈ E(a, b) and for any element X = (x, y) ∈ E(a, b),

X + e =
1

a
(xa, ya) = (x, y) = X. (3.8)

Hence e = (a, 0) is the identity element. For every element X = (x, y) ∈ E(a, b) the element

X ′ = (x,−y) ∈ E(a, b) is the inverse element of X. Since

X +X ′ =
(x2
a

+
a

b2
y2,

1

a
(xy − yx)

)
= (a, 0) = e. (3.9)

Finally let X1 = (x1, y1), X2 = (x2, y2) ∈ E(a, b) then

X1 +X2 =
1

a

(
x1x2 −

a2

b2
y1y2, y1x2 + x1y2

)
=

1

a

(
x2x1 −

a2

b2
y2y1, y2x1 + x2y1

)
= X2 +X1. (3.10)

E(a, b), therefore, with the addition defined by definition 2, is an Abelian group. In order to use

E(a, b) for cryptography, the radii a and b have to be integer, and a relatively large prime number

P has to be selected. Then the new formulation is:

x2

a2
+
y2

b2
mod P = 1 mod P (3.11)

y2 mod P =
(
b2 − b2

a2
x2
)
mod P. (3.12)

Equations 3.11 and 3.12 along with the addition operation defined above provide phase modulations

due to the fact that the operations are around the ellipse, and quadratic modulation due to the y2

modulo prime number P operation.

7

www.manaraa.com

3.4.1 Ability of the Algorithm to Encrypt-Decrypt Data

The following theorem is fundamental in establishing that the elliptic cryptographic algorithm is

capable of encrypting and decrypting any data, including integer points not in Ep(a, b).

Theorem 2. The unit element (a, 0) ∈ Ep(a, b), under the addition

(x1, y1) + (x2, y2) =
1

a

(
x1x2 −

a2

b2
y1y2, x1y2 + x2y1

)
(3.13)

is also a unit element for every element (x, y) ∈ R2, where R2 represents the two dimensional space

of real numbers. In addition, if (x, y), are integer numbers with (x, y) ∈ Ep(a, b), where P is prime

positive integer and a and b are integers, then (x, P − y) ∈ Ep(a, b) and

(x, y) + (x, P − Y) = (a, 0). (3.14)

Therefore (x, P − y) is the additive inverse of (x, y). Also for every c ∈ R, (x, y) ∈ R2,

(c, 0) + (x, y) =
c

a
(x, y). (3.15)

Finally if c, x, y are integer numbers then

(c, 0) + (x, y) mod P =
(c
a

(x, y)
)
mod P. (3.16)

Proof

First we will prove that (a, 0) + (x, y) = (a, y), where (a, 0) ∈ Ep(a, b), and (x, y) ∈ R2. We

have that

(a, 0) + (x, y) =
1

a
(xa, ya) = (x, y). (3.17)

Hence (a, 0) is not only the identity element for the points in Ep(a, b), but all the points in R2.

Second we will prove that if (x, y) are integer numbers with (x, y) ∈ Ep(a, b), where P is a prime

positive integer and a and b are integers, then (x, P − y) ∈ Ep(a, b). Since (x, y) ∈ Ep(a, b), then:

y2 mod P =
(
b2 − b2

a2
x2
)
mod P.

Now,

(P − y)2 mod P = (P 2 − 2Py + y2) mod P = y2 mod P =
(
b2 − b2

a2
x2
)
mod P

hence, (x, P − y) ∈ Ep(a, b). We have:

(x, y) + (x, P − y) mod P =
1

a

(
x2 − a2

b2
(Py − y2), xP − xy + yx) mod P

8

www.manaraa.com

=
1

a

(
a2
(x2
a2

+
y2

b2

)
, 0

)
mod P = (a, 0) mod P. (3.18)

Therefore (x, P − y) is the additive inverse of (x, y).

Third we will prove that for every c ∈ R, (x, y) ∈ R2,

(c, 0) + (x, y) =
c

a
(x, y).

We have:

(c, 0) + (x, y) =
1

a
(cx, cy) =

c

a
(x, y). (3.19)

Fourth we will prove that if c, x, y are integers then

(c, 0) + (x, y) mod P =
(c
a

(x, y)
)

mod P.

We have that:

(c, 0) + (x, y) mod P =
(1

a
(cx, cy)

)
mod P =

(c
a

(x, y)
)

mod P. (3.20)

The importance of this theorem is that in order to encode and decode with the cyclic encoder

Ep(a, b) we have to choose a key (kx, ky) ∈ Ep(a, b) with additive inverse (kx, P − ky) ∈ Ep(a, b).

We break the message into pairs of integers (mx,my), where mx,my < P regardless of whether

(mx,my) belongs to Ep(a, b) or not. We have:

(cx, cy) = (mx,my) + (kx, ky) mod P =
1

a

(
mxkx −

a2

b2
myky,mxky +mykx

)
mod P. (3.21)

To decode the encoded message we add the inverse key to the ciphertext and we obtain:

(cx, cy) + (kx, P − ky) =
1

a

(
cxkx −

a2

b2
cy(P − ky), cx(P − ky) + cykx

)
mod P

=
1

a2

(
mxk

2
x −

a2

b2
(
mykykx + (mxky +mykx)(P − ky)

)
,

(mxkx −
a2

b2
myky)(P − ky) + (mxky +mykx)kx

)
mod P

=
1

a2

(
a2mx

(k2x
a2

+
k2y
b2

)
, a2my

(k2x
a2

+
k2y
b2

))
mod P =

a2

a2
(mx,my) mod P = (mx,my) (3.22)

So the algorithm can encode and decode. The third and fourth part of the theorem gives a shortcut

formula for additions between two elements of Ep(a, b), where one element has a y component zero.

9

www.manaraa.com

3.4.2 The Discrete Logarithm Problem in Elliptic Cryptography

If we consider a point (x1, y1) ∈ Ep(a, b), then the order n of the point G is the smallest positive

integer n such that

nG = (a, 0). (3.23)

If we consider the equation

Q = kP, (3.24)

where P,Q ∈ Ep(a, b), and k < n, then it is relatively easy to calculate Q, given k and P , but

is relatively hard to find k, given Q and P . This is the discrete logarithm problem in elliptic

cryptography.

Let Fp be the finite field of order p with p being an odd prime. The discrete logarithm problem

for genus 0 curves of the form

x2 −Dy2 = 1, (3.25)

where the solutions (x, y) ∈ FpxFp are points in the group and D ∈ Fp, D 6= 0, was analyzed by

Menezes and Vanstone in 1992 [13]. Ellipses are genus 0 curves, and if we let r = x
a , s = y

b , and

D = −1, we have

r2 −Ds2 = 1 =
x2

a2
+
y2

b2
. (3.26)

Thus, the homomorphisms presented in their paper work for elliptic cryptography. Therefore, if

−1 is a quadratic residue in Fp, then Ep(a, b) is homomorphic to F ∗p with the reduction needing

constant time after first computing
√
−1 [13]. If −1 is not a quadratic residue in Fp, then Ep(a, b)

is homomorphic to the p+ 1 subgroup of Fp2 with the reduction needing constant time [13]. Now

the discrete logarithm problem in Ep(a, b) is equivalent to the discrete logarithm problem in either

Fp, with the necessary precomputation, or Fp2 .

Discrete logarithms in Fp have been computable using the number field sieve in the subexpo-

nential time of Lp

[
1
3 ; 32/3

]
since 1993 [14]. Subexponential time is represented here by:

Ln→∞

[
v; c

]
= exp

{(
c+ o(1)

)
(logn)v(loglogn)1−v

}
(3.27)

[14]. The value of c has dropped with optimizations through the years. Since 2006, discrete

logarithms in Fp have been computable using two stages: a precomputation of Lp

[
1
3 ;
(
64
9

)1/3]
, and

Lp

[
1
3 ; 31/3

]
for each subsequent logarithm to compute [15]. An odd number can be factored in

10

www.manaraa.com

Lp

[
1
3 ;
(
64
9

)1/3]
using the general number field sieve [16]. Therefore an RSA system modulus n has

an equivalent level of security as Ep(a, b), where n and p have roughly the same number of bits and

−1 is not a quadratic residue in Fp.

The case of Fpk has seen progress in the last few years. Up until quite recently, there was

a notion that ”an RSA modulus n and a finite field Fpk therefore offer about the same level of

security if n and pk are of the same order of magnitude” [17]. This would imply that the Fp2

case would have greater security than RSA and the Fp case for p and n of the same order of

magnitude. Barbulescu et al. investigated this claim for Fpk where k is a small integer using their

new methods of finding polynomials to define extension fields [18]. They found that it was much

easier to compute a discrete logarithm in Fp2 where p was 90 bits than it was in Fp where p where

was 180 bits [18]. Complexity-wise current algorithms break up the DLP in Fpk by comparing p

to L

[
l; c

]
with varying values of l as the delimiters [19]. In all cases, the complexity is Lpk

[
1
3 ; c

]
where c has improved recently [19]. For the large case, when p = Lp

[
l; c

]
and 2

3 < l ≤ 1, Sarkar

and Singh’s NFS - A algorithm has complexity Lpk

[
1
3 ;
(
64
9

)1/3]
[20]. For the medium case of

1
3 < l < 2

3 , Kim and Jeong generalized the extended tower number field sieve to get a complexity

of Lpk

[
1
3 ;
(
48
9

)1/3]
[21]. The complexity of the boundary case, l = 2

3 , had the lowest c value for

the NFS - A algorithm [20]. The final case, where 0 ≤ l ≤ 1
3 , the complexity is L

[
1
4 ; o(1)

]
[22].

Therefore, the notion that the discrete logarithm problem in Fpk is as secure as RSA when n and

pk are of the same order of magnitude can only be true if p is a large prime in Fpk .

Elliptic cryptography compares well with RSA in that it is equivalently secure when −1 is not

a quadratic residue in Fp for n and p of roughly the same number of bits, and possibly more secure

when −1 is a quadratic residue in Fp and p is a large prime in Fp2 . XTR uses a subgroup of Fp6

which should make is as secure as RSA when n and p6 have roughly the same number of bits [23].

However this is only true of the case where p is a large prime in Fp6 [20, 21, 22]. XTR should, in

general, be more secure for a given prime than elliptic cryptography. Elliptic curve cryptography

currently only has exponential attacks, the fastest with complexity O
(√
p
)

[24]. For the same p it

is much more secure than cryptosystems that are susceptible to the number field sieve, like RSA

and elliptic cryptography.

11

www.manaraa.com

3.4.3 Key Exchange Analogous to Diffie-Hellman

We first pick a large prime number P and two radii a and b. This defines the cyclic group Ep(a, b).

Then we choose a base point G = (x, y) ∈ Ep(a, b). Since the prime number P is large and the

number of elements in the cyclic group Ep(a, b) is greater than P , G can be chosen such that its

order is greater than P . So G has a relatively larger order. A key exchange between users A and

B can be accomplished as follows:

1. A selects an integer kA less than n to be A’s private key. Subsequently A generates a public

key KA = kA ·G. A’s public key belongs to the group Ep(a, b).

2. B selects an integer kB less than n to be B’s private key. Subsequently B generates a public

key KB = kB ·G. B’s public key belongs to the group Ep(a, b).

3. A generates the secret key K = kA ·KB. B generates the secret key K = kB ·KA.

Notice that K = ka · KB = kAkBG = kBkAG = kBKA. For an attacker to break this algorithm

they would need to be able to compute kA, given G and KA, which we refer to as the elliptic

cryptographic logarithm problem, it is hard when the chosen prime number P is 128 bits or more.

3.4.4 Encryption-Decryption using Elliptic Cryptography

If user A wants to send a message to user B, first user A selects a sufficiently large prime number P

and two integer radii a and b. Then A selects a base pair G ∈ Ep(a, b) with maximum order n. A

then initiates a Diffie-Helman key exchange with B, to compute a common key as described in the

previous section. A then breaks the message into blocks of pairs and encrypts each block of pairs

using the common key until the entire message is encrypted. A transmits the encrypted message

to B. Based on the common key, B computes the additive inverse key. B breaks the ciphertext into

blocks of pairs. To each pair, B adds the inverse key until the entire message is decrypted.

3.4.5 Digital Signing

To encrypt, we use a key (x1, y1) ∈ Ep(a, b) that is distributed during the key exchange to the par-

ticipants only, and for decryption the unique inverse key is used. Only the two people participating

in the message exchange know the key, therefore the person receiving the message knows that the

message came from the only other person that has the key. Therefore, the algorithm is good for

digital signing.

12

www.manaraa.com

3.5 Generalization of the Algorithm to an Ellipse of Arbitrary Center

The algorithm can be easily extended to use ellipses with arbitrary center (c, d). If we denote the

set of elements on the circumference of an ellipse with center (c, d) and radii a and b by E(a, b, c, d)

and define the addition of any two elements (x1, y1), (x2, y2) of this set as:

(x3, y3) = (x1, y1) + (x2, y2)

=

(
c+

1

a

(
(x1− c)(x2− c)−

a2

b2
(y1−d)(y2−d)

)
, d+

1

a

(
(x1− c)(y2−d) + (x2− c)(y1−d)

))
(3.28)

then
(x3 − c)2

a2
+

(y3 − d)2

b2

=
(x1 − c)2(x2 − c)2

a4
+

(y1 − d)2(y2 − d)2

b4
+

(x2 − c)2(y1 − d)2

a2b2
+

(x1 − c)2(y2 − d)2

a2b2

=
((x1 − c)2

a2
+

(y1 − d)2

b2

)((x2 − c)2

a2
+

(y2 − d)2

b2

)
= 1 (3.29)

Hence (x3, y3) ∈ E(a, b, c, d). Closure under the addition operation as it is defined here is therefore

satisfied.

Next we verify that the identity element is e = (a + c, d) ∈ E(a, b, c, d). Consider any element

S = (x, y) ∈ E(a, b, c, d), then based on the closure property we just proved, the sum S + e is also

an element of E(a, b, c, d). We have that:

S + e = e+ S =
(
c+

1

a

(
(x− c)a

)
, d+

1

a

(
a(y − d)

))
= (x, y). (3.30)

Hence e is the identity element of the set E(a, b, c, d). If there is also another identity element

e′ ∈ E(a, b, c, d), then since e is an identity element,

e+ e′ = e′.

Now since e′ is and identity element,

e+ e′ = e

which implies

e = e′. (3.31)

Hence, the identity element is unique.

Next we show that for every element S = (x, y) ∈ E(a, b, c, d), S′ = (x, d − y) ∈ E(a, b, c, d) is

the additive inverse of S. We have that:

S + S′ =

(
c+

1

a

(
(x− c)2 +

a2

b2
(y − d)2

)
, d+

1

a

(
(x− c)(d− y) + (x− c)(y − d)

))
13

www.manaraa.com

=

(
c+ a

((x− c)2

a2
+

(y − d2

b2

)
, d

)
= (a+ c, d) = e (3.32)

For every S = (x, y) there is only one inverse S′. Since if there was another inverse S′′ then

S′′ + S = S′ + S = e

or

S′′ = S′ + S − S

meaning

S′′ = S′. (3.33)

Next we prove that the associative law holds. We will show that if S1 = (x1, y1), S2 = (x2, y2) and

S3 = (x3, y3), where S1, S2, S3 ∈ E(a, b, c, d) then S1 + (S2 + S3) = (S1 + S2) + S3. We have:

S1 + (S2 + S3)

= S1 +

(
c+

1

a

(
(x2 − c)(x3 − c)−

a2

b2
(y2 − d)(y3 − d)

)
, d+

1

a

(
(x2 − c)(y3 − d) + (x3 − c)(y2 − d)

))
=

(
c+

1

a2

(
(x3−c)

(
(x1−c)(x2−c)−

a2

b2
(y1−d)(y2−d)

)
−a

2

b2
(y3−d)

(
(x1−c)(y2−d)+(y1−d)(x2−c)

))
,

d+
1

a2

(
(y3−d)

(
(x1−c)(x2−c)−

a2

b2
(y1−d)(y2−d)

)
+(x3−c)

(
(x1−c)(y2−d)+(y1−d)(x2−c)

))
= (S1 + S2) + S3 = S1 + S2 + S3 (3.34)

Finally, for any two elements, S1 = (x1, y1), S2 = (x2, y2) ∈ E(a, b, c, d), we have:

S1 + S2 = (x1, y1) + (x2, y2)

=

(
c+

1

a

(
(x1 − c)(x2 − c)−

a2

b2
(y1 − d)(y2 − d)

)
, d+

1

a

(
(x1 − c)(y2 − d) + (x2 − c)(y1 − d)

))
= S2 + S1 (3.35)

Hence E(a, b, c, d) is an Abelian group.

In order for E(a, b, c, d) to be used for cryptography, a, b, c, and d have to be integers, and a

relatively large number P has to be selected. Then the new formulation suitable for cryptography

is of the form:
(x− c)2

a2
+

(y − d)2

b2
mod P = 1 mod P (3.36)

The key exchange and management are similar to that of 3.4.3 where (0, 0) is the center of the

ellipse. Digital signing follows in a similar fashion to that of the previous section.

14

www.manaraa.com

3.6 Conclusion

A new cryptographic algorithm was introduced in this research paper. The algorithm incorporates

phase modulation and modulation with respect to a relatively large prime number. The use of

integer points not in the group, rather than being limited to only points in the group, increases

the ease of encoding. The algorithm can be broken in subexponential time, with a worst case of

Lp

[
1
3 ;
(
64
9

)1/3]
. The algorithm can also be used for key exchange, key management, key distribu-

tion, digital signing and digital signatures, authentication, as well as encryption and decryption.

15

www.manaraa.com

Chapter 4

Examples

To see the math in a less abstract manner, small examples for both the (0, 0) and arbitrary center

versions of the elliptic cryptographic algorithm will be presented. The details of finding the points

in the group and how to determine the order of the elements will be discussed. A base point will

be picked and used to create a shared key with two secret keys, each less than the order of the base

point. The shared key will be used to encrypt a small familiar message. Finally, the message will

be decrypted.

4.1 Example Using Ep(a, b)

First the prime number and radii are chosen to be 11, 5, and 6 respectively. The equation defining

E11(5, 6) is:

y2 = 3− x2 mod 11. (4.1)

To find the points that solve this equation, it is helpful to note which integers modulo 11 are

quadratic residues, or perfect squares. These are 1, 3, 4, 5, and 9. Now testing for all the possible

values of x mod 11 will reveal the points.

16

www.manaraa.com

x y2 = 3− x2 mod 11 Residue y

0 3 yes 5, 6

1 2 no —

2 10 no —

3 5 yes 4, 7

4 9 yes 3, 8

5 0 yes 0

6 0 yes 0

7 9 yes 3, 8

8 5 yes 4, 7

9 10 no —

10 2 no —

Table 4.1: Points in the E11(5, 6) Group

E11(5, 6) has 12 points as shown in table 4.1. One of these points will chosen as the base point.

The base point should have a high order within the group. Recall the definition of order from section

3.4.2 (equation 3.23). Ideally the base point should have as high an order as possible. For this

small example, it is simple to examine the Cayley table (table 4.3) of the group to see all possible

addition pairs and results within the group. Elements with the highest order are candidates for the

base point.

Order Elements

1 (5,0)

2 (6,0)

3 (3,4), (3,7)

4 (0,5), (0,6)

6 (8,4), (8,7)

12 (4,3), (4,8), (7,3), (7,8)

Table 4.2: Order of the Points in the E11(5, 6) Group

For this example, the point (4, 3) will be the base point with order n = 12. A will chose the

17

www.manaraa.com

(0,5) (0,6) (3,4) (3,7) (4,3) (4,8) (5,0) (6,0) (7,3) (7,8) (8,4) (8,7)

(0,5) (6,0) (5,0) (7,3) (4,3) (8,4) (3,4) (0,5) (0,6) (8,7) (3,7) (7,8) (4,8)

(0,6) (5,0) (6,0) (4,8) (7,8) (3,7) (8,7) (0,6) (0,5) (3,4) (8,4) (4,3) (7,3)

(3,4) (7,3) (4,8) (3,7) (5,0) (0,5) (7,8) (3,4) (8,7) (4,3) (0,6) (6,0) (8,4)

(3,7) (4,3) (7,8) (5,0) (3,4) (7,3) (0,6) (3,7) (8,4) (0,5) (4,8) (8,7) (6,0)

(4,3) (8,4) (3,7) (0,5) (7,3) (8,7) (5,0) (4,3) (7,8) (6,0) (3,4) (4,8) (0,6)

(4,8) (3,4) (8,7) (7,8) (0,6) (5,0) (8,4) (4,8) (7,3) (3,7) (6,0) (0,5) (4,3)

(5,0) (0,5) (0,6) (3,4) (3,7) (4,3) (4,8) (5,0) (6,0) (7,3) (7,8) (8,4) (8,7)

(6,0) (0,6) (0,5) (8,7) (8,4) (7,8) (7,3) (6,0) (5,0) (4,8) (4,3) (3,7) (3,4)

(7,3) (8,7) (3,4) (4,3) (0,5) (6,0) (3,7) (7,3) (4,8) (8,4) (5,0) (0,6) (7,8)

(7,8) (3,7) (8,4) (0,6) (4,8) (3,4) (6,0) (7,8) (4,3) (5,0) (8,7) (7,3) (0,5)

(8,4) (7,8) (4,3) (6,0) (8,7) (4,8) (0,5) (8,4) (3,7) (0,6) (7,3) (3,4) (5,0)

(8,7) (4,8) (7,3) (8,4) (6,0) (0,6) (4,3) (8,7) (3,4) (7,8) (0,5) (5,0) (3,7)

Table 4.3: Cayley Table for the E11(5, 6) Group

secret key 2 < 12, and B will chose the secret key 8 < 12. A will therefore have the public key:

2 ∗ (4, 3) = (4, 3) + (4, 3) = (8, 7). (4.2)

B calculates a public key, (3, 4), using the base point and B’s secret key 8 the same way as A. The

encryption key will be calculated by both.

2 ∗ (3, 4) = 8 ∗ (8, 7) = (3, 7) (4.3)

(3, 4) will be used to decrypt. These two are inverses, which can be seen in table 4.3. The addition

of these two points yields the identity (5, 0). The point used for decryption must be the inverse of

the encryption key.

To encrypt the message, ”hello world,” it must first be converted to points but not necessarily

elements of E11(5, 6). Points can be created by converting the letters to their ASCII codes. In this

case, 104, 101, 108, 108, 111, 119, 111, 114, 108, and 100. For conveniece, 100 will be subtracted from

each. The points are: (0, 4), (0, 1), (0, 8), (0, 8), (1, 1), (1, 9), (1, 1), (1, 4), (0, 8) and (0, 0). Encryption

consists only of adding the key to each point using the addition operation of E11(5, 6). For example:

9(3 ∗ 0− 4 ∗ 7, 4 ∗ 3 + 0 ∗ 7) mod 11 = (1, 9). (4.4)

The resulting encrypted message is: (1, 9), (3, 5), (2, 7), (2, 7), (8, 2), (10, 9), (8, 2), (6, 6), (2, 7), and

(0, 0).

Decryption is achieved by adding the inverse of the key to the encrypted points.

9(3 ∗ 1− 4 ∗ 9, 3 ∗ 9 + 4 ∗ 1) mod 11 = (0, 4) (4.5)

18

www.manaraa.com

The original points are recovered: (0, 4), (0, 1), (0, 8), (0, 8), (1, 1), (1, 9), (1, 1), (1, 4), (0, 8) and (0, 0).

Different schemes can be used to break the message into points, but values of x and y in the points

must be less than the prime. If an x or y value is larger than the prime, the modulus operation

will map that value to a value lower than the prime that might already be used in the scheme. The

encryption and decryption operations will not be bijective in that case.

4.2 Example Using Ep(a, b, c, d)

First the prime number and radii are chosen to be 11, 7, 5, 7, and 9 respectively. The equation

defining E11(7, 5, 7, 9) is:

(y − 9)2 = 3− 5(x− 7)2 mod 11. (4.6)

To figure out which points solve this equation, finding the quadratic residues modulo 11 can be

helpful. These are the same as in the previous example: 1, 3, 4, 5, and 9. Now testing all the

possible values of x mod 11 will reveal the points. E11(7, 5, 7, 9) has 12 points as shown in table

x (y − 9)2 = 3− 5(x− 7)2 mod 11 Residue y

0 0 yes 9

1 10 no —

2 10 no —

3 0 yes 9

4 2 no —

5 5 yes 2, 5

6 9 yes 1, 6

7 3 yes 3, 4

8 9 yes 1, 6

9 5 yes 2, 5

10 2 no —

Table 4.4: Points in the E11(7, 5, 7, 9) Group

4.4. Like the previous example, the base point will be chosen from among these points. The points

with the highest order should be the possible choices. The points need to be checked one by one

for order. Since this example features a small group, a Cayley table (table 4.6) can be constructed

and used to check the result of any additions within the group.

19

www.manaraa.com

Order Elements

1 (3,9)

2 (0,9)

3 (9,2), (9,5)

4 (7,3), (7,4)

6 (5,2), (5,5)

12 (6,1), (6,6), (8,1), (8,6)

Table 4.5: Order of the Points in the E11(7, 5, 7, 9) Group

(0,9) (3,9) (5,2) (5,5) (6,1) (6,6) (7,3) (7,4) (8,1) (8,6) (9,2) (9,5)

(0,9) (3,9) (0,9) (9,5) (9,2) (8,6) (8,1) (7,4) (7,3) (6,6) (6,1) (5,5) (5,2)

(3,9) (0,9) (3,9) (5,2) (5,5) (6,1) (6,6) (7,3) (7,4) (8,1) (8,6) (9,2) (9,5)

(5,2) (9,5) (5,2) (9,2) (3,9) (6,6) (7,3) (8,6) (6,1) (7,4) (8,1) (0,9) (5,5)

(5,5) (9,2) (5,5) (3,9) (9,5) (7,4) (6,1) (6,6) (8,1) (8,6) (7,3) (5,2) (0,9)

(6,1) (8,6) (6,1) (6,6) (7,4) (5,5) (3,9) (5,2) (9,5) (0,9) (9,2) (7,3) (8,1)

(6,6) (8,1) (6,6) (7,3) (6,1) (3,9) (5,2) (9,2) (5,5) (9,5) (0,9) (8,6) (7,4)

(7,3) (7,4) (7,3) (8,6) (6,6) (5,2) (9,2) (0,9) (3,9) (5,5) (9,5) (8,1) (6,1)

(7,4) (7,3) (7,4) (6,1) (8,1) (9,5) (5,5) (3,9) (0,9) (9,2) (5,2) (6,6) (8,6)

(8,1) (6,6) (8,1) (7,4) (8,6) (0,9) (9,5) (5,5) (9,2) (5,2) (3,9) (6,1) (7,3)

(8,6) (6,1) (8,6) (8,1) (7,3) (9,2) (0,9) (9,5) (5,2) (3,9) (5,5) (7,4) (6,6)

(9,2) (5,5) (9,2) (0,9) (5,2) (7,3) (8,6) (8,1) (6,6) (6,1) (7,4) (9,5) (3,9)

(9,5) (5,2) (9,5) (5,5) (0,9) (8,1) (7,4) (6,1) (8,6) (7,3) (6,6) (3,9) (9,2)

Table 4.6: Cayley Table for the E11(7, 5, 7, 9) Group

For this example, the point (8, 1) will be the base point. A will choose the secret key 5 < 12,

and B will chose the secret key 4 < 12. A’s public key is (6, 1), and B calculates a public key as

shown in equation 4.7.

4 ∗ (8, 1) = (8, 1) + (8, 1) + (8, 1) + (8, 1) = (5, 2) + (5, 2) = (9, 2) (4.7)

Both calculate the shared encryption key using their own private key and the other’s public key

as shown in equation 4.8.

4 ∗ (6, 1) = 5 ∗ (9, 2) = (9, 5) (4.8)

The decryption key is (9, 2). These two are inverses, which can be seen in table 4.6. The addition

of these two points yields the identity (3, 9). The point used for decryption must be the inverse of

the encryption key.

20

www.manaraa.com

To encrypt the message, ”hello world,” it must first be converted to points but not necessarily

elements of E11(7, 5, 7, 9). Points can be created by converting the letters to their ASCII codes. In

this case, 104, 101, 108, 108, 111, 119, 111, 114, 108, and 100. For conveniece, 100 will be subtracted

from each. The points are: (0, 4), (0, 1), (0, 8), (0, 8), (1, 1), (1, 9), (1, 1), (1, 4), (0, 8) and (0, 0). En-

cryption consists only of adding the key to each point using the addition operation of E11(7, 5, 7, 9).

For example:(
7+8

(
(0−7)(9−7)−9(4−9)(5−9)

)
, 9+8

(
(9−7)(4−9)+(0−7)(5−9)

))
mod 11 = (6, 10). (4.9)

The resulting encrypted message is: (6, 10), (0, 6), (3, 8), (3, 8), (5, 7), (10, 3), (5, 7), (0, 0), (3, 8), and

(9, 1).

Decryption is achieved by adding the inverse of the key to the encrypted points.(
7+8

(
(9−7)(6−7)−9(2−9)(10−9)

)
, 9+8

(
(9−7)(10−9)+(6−7)(2−9)

))
mod 11 = (0, 4) (4.10)

The original points are recovered: (0, 4), (0, 1), (0, 8), (0, 8), (1, 1), (1, 9), (1, 1), (1, 4), (0, 8) and (0, 0).

Different schemes can be used to break the message into points, but values of x and y in the points

must be less than the prime for the encryption and decryption to be bijective.

21

www.manaraa.com

Chapter 5

Code Demonstration

The full process from picking a prime to encrypting and decrypting a file will be explained in this

chapter with sample C++ code for a relatively small example using the Ep(a, b) version of the

algorithm. For high security purposes, the code should be expanded to work with primes on the

order of the key sizes recommended by NIST for RSA, usually primes greater than 2048 bits [25].

The purpose of this example is to demonstrate the process of setting up the algorithm.

The first step is to choose a prime and radii. For this example 127 was chosen so that the data

could be simply read byte by byte. This prime is too small to be safe in most circumstances, but it

works for a simple example. The radii were chosen to be 50 and 103. They can be chosen randomly

from integers between 0 and the prime.

For the upcoming calculations, it will be necessary to find the inverses of the radii in Fp, or the

integer t for each radius a each such that:

p ∗ l − a ∗ t = 1. (5.1)

These can be computed using the extended Euclidean algorithm as shown in figure 5.1.

The next step is to find points in the group E127(50, 103) that could be chosen as the base

point or generator. To find points in the group, it is helpful to keep track of the all the possible

quadratic residues, or perfect squares. This makes determining whether there is a solution for y

in the equation that defines the group easier. There are p−1
2 quadratic roots for a given prime p.

Note that positive and negative integers of the same absolute value have the same square. Figure

5.2 has code for calculating and storing the quadratic residues. The type Square is a structured

type containing two integers: a square, and one of its roots. After the squares are found, they are

sorted by the square values, so binary search can be used to retrieve specific squares. In the full

22

www.manaraa.com

Figure 5.1: This is C++ code for finding the inverses of the radii.

code found in appendix C, quicksort is used. If the prime is relatively large, any sorting algorithm

using recursion might cause the stack to overflow, so an iterative approach might work better in

that case.

The base point should be a point in the group with high order; the best case would be the same

order as the group. To find the order of a point, the point is added to itself, using the group’s

addition operation, until the sum is the identity element. Figure 5.3 shows a function for adding

two points where Point is a structured type containing two integers: x, and y.

Now a base point can be searched for. To find the points of the group, all possible values of

x, integers from 0 to p − 1, can be checked to see if a corresponding y exists. Plugging x into the

equation for points in the group (see equation 3.12) will yield a value for y2. If this value is a

quadratic residue, then the point exists. If not, then there is no point in the group with the given

x value. Once a point is found, it is added to itself until the sum equals the identity so that the

order of the point can be determined. If the order of an acceptable size, the point is chosen as the

base point. Figure 5.4 shows this process.

All the steps upto this point are part of a precomputation phase. With a base point of known

order and a group, Ep(a, b) generated by its parameters, p, a, and b, encryption and decryption

can be accomplished freely without needing to find a new base point. A relatively large prime will

23

www.manaraa.com

Figure 5.2: This is C++ code for finding the quadratic residues in Fp.

Figure 5.3: This is C++ code for adding two points in E127(50, 103).

cause this phase to take some time to compute a base point.

Now A and B, the two entities wishing to communicate, can use a Diffie-Hellman key exchange

to generate a shared key. The details of this phase are described in section 3.4.3. Each must first

pick a private key between 0 and the prime. Then they use it to calculate public keys that they

share with each other. Using their own private key and the other’s public key, both can compute

the same shared key. This shared key will be used for encryption, and its inverse will be used for

decryption. Figure 5.5 shows how A calculates the necessary keys.

A can encrypt a message for B with the shared key simply by breaking the message into points,

adding the shared key to each point, and sending the sums to B. Note that the points derived from

the message need not be points in the group that A and B have chosen, namely E127(50, 103) in

this example. Figure 5.6 shows simple code for encryption using E127(50, 103) and the shared key,

24

www.manaraa.com

Figure 5.4: This is C++ code for finding a base point using E127(50, 103).

(40, 11).

The code for decryption is similar except the decryption key is added to the ciphertext instead

of the shared key. The decryption key is simply the inverse of the shared key. Figure 5.7 shows

code for decryption.

The full code for this little example can be found in appendix C.

25

www.manaraa.com

Figure 5.5: This is C++ code for calculating A’s public key and the shared key using E127(50, 103).

Figure 5.6: This is C++ code for encryption using E127(50, 103).

26

www.manaraa.com

Figure 5.7: This is C++ code for decryption using E127(50, 103).

27

www.manaraa.com

Chapter 6

Conclusion

A new cryptographic algorithm using a group based system relying on the discrete logarithm

problem was examined. Using the points on an ellipse of arbitrary center and radii, a group can be

created and used for cryptography. The elliptic cryptographic algorithm is fit for encryption, digital

signing, and key distribution and management at this time. In the worst case, it can be broken

in Lp

[
1
3 ;
(
64
9

)1/3]
time [15]. If quantum computers able to run Shor’s algorithm for large groups

become prevalent, then this algorithm will no longer be safe. For the mean time, it is recommended

that the prime and key chosen follow the sizes recommended for RSA schemes, because the two

algorithms have similar security for similar key orders.

28

www.manaraa.com

Appendix A

29

www.manaraa.com

IEEE Permission

30

www.manaraa.com

Appendix B

Second Author Permission

31

www.manaraa.com

Appendix C

Full Code for the Demonstration in

Chapter 5

32

www.manaraa.com

//Program to find a base point with order greater than a given value
#include <iostream>
#include <fstream>;

struct Point {
int x = 0;
int y = 0;

};

struct Square {
int square;
int root;

};

int FindInverse(int);
void FindResidues(Square[]);
void SortSquares(Square[], int, int);
int SearchSquares(int, Square[], int, int);
void SwapSquares(Square*, Square*);
void Addition(Point, Point, int, int, Point*);
int FindBasePoint(Square[], int, int, int, Point*);

const int P = 127, A = 50, B = 103;
const int numberOfResidues = (int)((P - 1) / 2);

using namespace std;
int main() {

int invA, invB, A2B2, bpOrder;
Square quadraticResidues[numberOfResidues];
Point basePoint;
char in = 'a';

//Finding inverses of A and B
invA = FindInverse(A);
invB = FindInverse(B);

//Calculating a^2/b^2 for convenience in later additions
A2B2 = (A*A %P)*invB*invB % P;
while (A2B2 > P)

A2B2 = A2B2 - P;
while (A2B2 < 0)

A2B2 = A2B2 + P;

//Finding all the quadratic residues
FindResidues(quadraticResidues);

//Finding a base point
bpOrder = FindBasePoint(quadraticResidues, P - 1, invA, invB, &basePoint);

if (bpOrder == 1)
cout << "Invalid point order. No base point found." << endl;

else
{

cout << "Results Using E" << P << "(" << A << "," << B << "):" << endl;
cout << "Base Point: (" << basePoint.x << "," << basePoint.y << ")" <<
endl;
cout << "Base Point Order: " << bpOrder << endl;
cout << "a' = " << invA << endl;
cout << "a^2/b^2 = " << A2B2 << endl;

}

www.manaraa.com

cout << "Please enter 'q' when finished reading results." << endl;
while (in != 'q' && in != 'Q')
{

cin >> in;
}
return 0;

}

//Using Extended Euclidean Algorithm
int FindInverse(int x)
{

int quotient = 10, coefficients[2], remainder[2], temp;

remainder[0] = P;
remainder[1] = x;
coefficients[0] = 0;
coefficients[1] = 1;
while (remainder[1] > 0)
{

quotient = remainder[0] / remainder[1];
temp = remainder[0] - quotient*remainder[1];
remainder[0] = remainder[1];
remainder[1] = temp;
if (remainder[1] > 0) {

temp = coefficients[0] - coefficients[1] * quotient;
coefficients[0] = coefficients[1];
coefficients[1] = temp;

}
}
while (coefficients[1] < 0)

coefficients[1] = coefficients[1] + P;
while (coefficients[1] > P)

coefficients[1] = coefficients[1] - P;
return coefficients[1];

}

//Simply recording all squares up to P/2.
//After P/2 the squares repeat
void FindResidues(Square quadraticResidues[])
{

int square;
for (int i = 0; i < numberOfResidues; i++)
{

square = (i * i) % P;
while (square > P)

square = square - P;
while (square < 0)

square = square + P;
quadraticResidues[i].square = square;
quadraticResidues[i].root = i;

}
SortSquares(quadraticResidues, 0, numberOfResidues-1);

}

//Using Binary Search
int SearchSquares(int square, Square qr[], int low, int high)
{

int mid = (low + high) / 2;
if (qr[mid].square == square)

return qr[mid].root;

www.manaraa.com

if (low >= high)
return -1;

if (qr[mid].square < square)
return SearchSquares(square, qr, mid+1, high);

else
return SearchSquares(square, qr, low, mid-1);

}

//Using Quicksort
void SortSquares(Square qr[], int low, int high)
{

int pivot = low;
if (high <= low)

return;
for (int i = low + 1; i <= high; i++)
{

if (qr[pivot].square > qr[i].square)
if (pivot + 1 == i)

SwapSquares(&qr[i], &qr[pivot]);
else
{

SwapSquares(&qr[i], &qr[pivot + 1]);
SwapSquares(&qr[pivot + 1], &qr[pivot]);

}
}
SortSquares(qr, low, pivot - 1);
SortSquares(qr, pivot + 1, high);

}

//Swaps two Square structs for quicksort
void SwapSquares(Square* first, Square* second)
{

Square temp;

temp.square = first->square;
temp.root = first->root;
first->square = second->square;
first->root = second->root;
second->square = temp.square;
second->root = temp.root;

}

//Adds two Points
void Addition(Point point1, Point point2, int invA, int invB, Point* result)
{

Point point3;
int A2B2 = (A*A % P)*invB*invB % P;

point3.x = invA*(point1.x*point2.x - A2B2*point1.y*point2.y) % P;
point3.y = invA*(point1.x*point2.y + point2.x*point1.y) % P;
while (point3.x > P)

point3.x = point3.x - P;
while (point3.x < 0)

point3.x = point3.x + P;
while (point3.y > P)

point3.y = point3.y - P;
while (point3.y < 0)

point3.y = point3.y + P;
result->x = point3.x;
result->y = point3.y;

www.manaraa.com

}

//It goes through possible points in the group, using the quadratic residues
to determine
//whether a point exists. Once a point is discovered, it checks the order to
see if it meets
//the passed criteria. A point with at least the minimum order is returned, or
the identity is
//returned if no such point is found.
int FindBasePoint(Square qr[], int minOrderSize, int invA, int invB, Point*
basePoint)
{

Point bPoint, identity, sum;
int order, B2 = B*B % P, y2, residue;
int B2A2 = B2*invA*invA % P;

identity.x = A;
identity.y = 0;

for (int i = 0; i < P; i++)
{

y2 = B2 - B2A2 * i * i % P;
while (y2 < 0)

y2 = y2 + P;
while (y2 > P)

y2 = y2 - P;
residue = SearchSquares(y2, qr, 0, numberOfResidues-1);
if (residue >= 0)
{

bPoint.x = i;
bPoint.y = residue;
sum.x = i;
sum.y = residue;
order = 0;
while (!(sum.x == identity.x && sum.y == identity.y))
{

Addition(sum, bPoint, invA, invB, &sum);
order++;

}
order++;
if (order >= minOrderSize)
{

basePoint->x = bPoint.x;
basePoint->y = bPoint.y;
return order;

}
}

}
basePoint->x = identity.x;
basePoint->y = identity.y;
return 1;

}

www.manaraa.com

//A's program to encrypt a message
#include <iostream>
#include <fstream>;

struct Point {
int x = 0;
int y = 0;

};

void Addition(Point, Point, int, int, Point*);

const int P = 127, A = 50, B = 103;

using namespace std;
int main() {

ifstream message;
ofstream code;
int invA, A2B2, privateKey, bpOrder;
Point encryptKey, publicKeyA, publicKeyB, basePoint, m;
char in = 'a';

//A chooses a private key less than the order of the base point.
privateKey = 19;

//This information was given by the previous program.
basePoint.x = 4;
basePoint.y = 20;
bpOrder = 128;
invA = 94;
A2B2 = 104;

//B shares this public key
publicKeyB.x = 110;
publicKeyB.y = 8;

//Calculating A's Public Key
publicKeyA.x = basePoint.x;
publicKeyA.y = basePoint.y;
for (int i = 1; i < privateKey; i++)

Addition(basePoint, publicKeyA, invA, A2B2, &publicKeyA);

//Calculating the shared encryption key
encryptKey.x = publicKeyB.x;
encryptKey.y = publicKeyB.y;
for (int i = 1; i < privateKey; i++)

Addition(encryptKey, publicKeyB, invA, A2B2, &encryptKey);

//Encrypting
message.open("TestMessage.txt", std::ios::binary | std::ios::in);
code.open("TestCrypt.txt", std::ios::binary | std::ios::out);
if (!message || !code)
{

cout << "Invalid File" << endl;
return 0;

}
while (!message.eof())
{

message.read((char *)&in, sizeof(char));
m.x = in;
message.read((char *)&in, sizeof(char));

www.manaraa.com

m.y = in;
Addition(m, encryptKey, invA, A2B2, &m);
code.write((char *)&m.x, sizeof(char));
code.write((char *)&m.y, sizeof(char));

}
message.close();
code.close();
return 0;

}

//Adds two Points
void Addition(Point point1, Point point2, int invA, int A2B2, Point* result)
{

Point point3;

point3.x = invA*(point1.x*point2.x - A2B2*point1.y*point2.y) % P;
point3.y = invA*(point1.x*point2.y + point2.x*point1.y) % P;
while (point3.x > P)

point3.x = point3.x - P;
while (point3.x < 0)

point3.x = point3.x + P;
while (point3.y > P)

point3.y = point3.y - P;
while (point3.y < 0)

point3.y = point3.y + P;
result->x = point3.x;
result->y = point3.y;

}

www.manaraa.com

//B's program to decrypt A's message
#include <iostream>
#include <fstream>;

struct Point {
int x = 0;
int y = 0;

};

void Addition(Point, Point, int, int, Point*);

const int P = 127, A = 50, B = 103;

using namespace std;
int main() {

ofstream message;
ifstream code;
int invA, A2B2, privateKey, bpOrder;
Point encryptKey, publicKeyA, publicKeyB, basePoint, m, decryptKey;
char in;

//B chooses a private key less than the order of the base point.
privateKey = 87;

//This point was picked by the previous program.
basePoint.x = 4;
basePoint.y = 20;
bpOrder = 128;
invA = 94;
A2B2 = 104;

//A shares this public key
publicKeyA.x = 91;
publicKeyA.y = 6;

//Calculating B's Public Key
publicKeyB.x = basePoint.x;
publicKeyB.y = basePoint.y;
for (int i = 1; i < privateKey; i++)

Addition(basePoint, publicKeyB, invA, A2B2, &publicKeyB);

//Calculating the shared encryption key
encryptKey.x = publicKeyA.x;
encryptKey.y = publicKeyA.y;
for (int i = 1; i < privateKey; i++)

Addition(encryptKey, publicKeyA, invA, A2B2, &encryptKey);

//Calculating the decryption key
decryptKey.x = encryptKey.x;
decryptKey.y = P - encryptKey.y;

//Decrypting
message.open("TestDecrypt.txt", std::ios::binary | std::ios::out);
code.open("TestCrypt.txt", std::ios::binary | std::ios::in);
if (!message || !code)
{

cout << "Invalid File" << endl;
return 0;

}
while (!code.eof())

www.manaraa.com

{
code.read((char *)&in, sizeof(char));
m.x = in;
code.read((char *)&in, sizeof(char));
m.y = in;
Addition(m, decryptKey, invA, A2B2, &m);
message.write((char *)&m.x, sizeof(char));
message.write((char *)&m.y, sizeof(char));

}
message.close();
code.close();
return 0;

}

//Adds two Points
void Addition(Point point1, Point point2, int invA, int A2B2, Point* result)
{

Point point3;

point3.x = invA*(point1.x*point2.x - A2B2*point1.y*point2.y) % P;
point3.y = invA*(point1.x*point2.y + point2.x*point1.y) % P;
while (point3.x > P)

point3.x = point3.x - P;
while (point3.x < 0)

point3.x = point3.x + P;
while (point3.y > P)

point3.y = point3.y - P;
while (point3.y < 0)

point3.y = point3.y + P;
result->x = point3.x;
result->y = point3.y;

}

www.manaraa.com

Bibliography

c©[2018] IEEE. Reprinted, with permission, from [E. F. Dettrey and E. A. Yfantis, ”A New Elliptic

Cryptographic Algorithm,” 2018 IEEE 8th Annual Computing and Communication Workshop and

Conference (CCWC), and Febuary, 2018]

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and

Public Key Cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[2] T. E. Gamal, “A public key cryptosystem and a signature scheme based on discrete loga-

rithms,” IEEE Transactions on Information Theory, vol. IT-31, July 1985.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comp., vol. 48, pp. 203–209, 1987.

[4] E. A. Yfantis, “A new cyclic cryptographic algorithm,” in 2018 IEEE 8th Annual Computing

and Communication Workshop and Conference (CCWC), pp. 20–25, Jan 2018.

[5] A. Gehani, T. LaBean, and J. Reif, DNA-based Cryptography, pp. 167–188. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2004.

[6] W.-L. Chang, S.-C. Huang, K. W. Lin, and M. S.-H. Ho, “Fast parallel dna-based algorithms for

molecular computation: discrete logarithm,” The Journal of Supercomputing, vol. 56, pp. 129–

163, May 2011.

[7] P. W. Shor, “Polynomial time algorithms for prime factorization and discrete logarithms on a

quantum computer,” SIAM J. Sci. Statist. Comput., vol. 26, p. 1484, 1997.

[8] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for elliptic curves,” QIC,

no. 4, pp. 317 – 344, 2003.

[9] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography.,” Journal

of the ACM, vol. 56, no. 6, pp. 34 – 34:40, 2009.

[10] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology CRYPTO

85, vol. 218 of Lecture Notes in Computer Science, (Berlin, Heidelberg), Springer, 1986.

[11] J. M. Merolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-

modulation Transmission System for Quantum Cryptography,” Optics Letters, vol. 24, no. 2,

pp. 104–106, 1999.

41

www.manaraa.com

[12] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Transactions on

Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[13] A. J. Menezes and S. A. Vanstone, “A Note on Cyclic Groups, Finite Fields, and the Dis-

crete Logarithm Problem,” Applicable Algebra in Engineering, Communication and Comput-

ing, vol. 3, no. 1, pp. 67–74, 1992.

[14] D. M. Gordon, “Discrete Logarithms in GF (P) Using the Number Field Sieve,” SIAM

Journal on Discrete Mathematics, vol. 6, no. 1, pp. 124–138, 1993.

[15] A. Commeine and I. Semaev, “An algorithm to solve the discrete logarithm problem with the

number field sieve,” in Public Key Cryptography - PKC 2006, vol. 218 of Lecture Notes in

Computer Science, 2006.

[16] C. Pomerance, “A Tale of Two Sieves,” Not. Amer. Math. Soc., vol. 43, pp. 1473–1485, 1996.

[17] A. K. Lenstra, “Unbelievable security matching aes security using public key systems,” in

Advances in Cryptology ASIACRYPT 2001, Lecture Notes in Computer Science, pp. 67–86,

2001.

[18] R. Barbulesu, P. Gaudry, A. Guillevic, and F. Morain, “Improving nfs for the discrete logarithm

problem in non-prime finite fields,” in Advances in Cryptology – EUROCRYPT 2015, Lecture

Notes in Computer Science, (Berlin, Heidelberg), pp. 129–155, Springer Berlin Heidelberg,

2015.

[19] A. Joux, R. Lercier, N. Smart, and F. Vercauteren, “The number field sieve in the medium

prime case,” in Advances in Cryptology - CRYPTO 2006, Lecture Notes in Computer Science,

p. 326344, 2006.

[20] P. Sarkar and S. Singh, “New complexity trade-offs for the (multiple) number field sieve algo-

rithm in non-prime fields,” in Advances in Cryptology EUROCRYPT 2016, Lecture Notes in

Computer Science, p. 429458, 2016.

[21] T. Kim and J. Jeong, “Extended tower number field sieve with application to finite fields of

arbitrary composite extension degree,” in Public-Key Cryptography PKC 2017, Lecture Notes

in Computer Science, p. 388408, 2017.

[22] A. Joux, “A new index calculus algorithm with complexity l(1/4 o(1)) in small characteristic,”

in Selected Areas in Cryptography – SAC 2013, Lecture Notes in Computer Science, p. 355379,

2014.

[23] A. K. Lenstra and E. R. Verheul, “An overview of the xtr public key system,” pp. 1–20, 2001.

[24] J. Hoffstein, J. Piper, and J. H. Silverman, An Introduction to Mathematical Cryptography,

ch. 5, pp. 279–349. New York, NY: Springer, 2014.

[25] E. Barker and Q. Dang, Recommendation for Key Management Part 3: Application-Specific

Key Management Guidance. NIST, Jan. 2015.

42

www.manaraa.com

Curriculum Vitae

Graduate College

University of Nevada, Las Vegas

Elizabeth Dettrey

Degrees:

Bachelor of Science in Computer Science and Mathematics 2016

University of Nevada Las Vegas

Thesis Title: Elliptic Cryptosystem

Thesis Examination Committee:

Chairperson, Dr. Evangelos Yfantis, Ph.D.

Committee Member, Dr. Hal Berghel, Ph.D.

Committee Member, Dr. Andreas Stefik, Ph.D.

Graduate Faculty Representative, Dr. Sarah Harris, Ph.D.

43

	Elliptic Cryptosystem
	Repository Citation

	tmp.1546623374.pdf.5Jat0

